NOTE

A Note on a Continuous Approximate Selection Theorem

Yuguang Xu

Department of Mathematics, Kunming Teachers College, Kunshi Road No. 2, Kunming Yunnan 650031, People's Republic of China Communicated by Frank Deutsch

Received June 28, 1999; accepted in revised form June 21, 2001; published online October 25, 2001

The purpose of this note is to show a new generalization of the continuous approximate selection theorem of F. Deutsch and P. Kenderov (1983, SIAM J. Math. Anal. 14, 185–194). © 2001 Elsevier Science

Let X be a subset of a Hausdorff topological space E, Y be a locally convex topological vector space, and $\mathcal{O}(x)$ be denoted the collection of all neighbourhoods of x. Suppose that $F: X \to 2^Y$ is a multivalued mapping with nonempty values and θ denotes the origin point of Y. F is called almost lower semicontinuous (abbreviated as a.l.s.c.) at $x \in X$ if for each $V \in \mathcal{O}(\theta)$ there exists an $U \in \mathcal{O}(x)$ such that $\bigcap \{F(u) + V : u \in U\} \neq \emptyset$. We say that F has continuous approximate selections if for every $V \in \mathcal{O}(\theta)$ there is a continuous function $f: X \to Y$ satisfied that $f(x) \in F(x) + V$ for all $x \in X$.

THEOREM A. If X is paracompact and F(x) is nonempty convex for each $x \in X$, then F is a.l.s.c. if and only if F has continuous approximate selections.

Proof. Necessity. It is analogous to the proof of Theorem 2.4 of [1], but let the convex neighborhood of the origin of Y be V instead of the ball $B_{\varepsilon}(\theta)$.

Sufficiency. For any $V \in \mathcal{O}(\theta)$ there is a balanced neighborhood $W \in \mathcal{O}(\theta)$ such that $W + W \subset V$. Let $f: X \to Y$ be a continuous mapping such that $f(x) \in F(x) + W$ for all $x \in X$. By virtue of the continuity of f, there exists for each $x \in X$ a neighborhood $U \in \mathcal{O}(x)$ such that $f(u) \in f(x) + W$ for all $u \in U$. From the balancedness of W, we have that $f(x) \in f(u) + W$ for all $u \in U$. Consequently,

$$f(x) \in f(u) + W + W \subset F(u) + V \qquad \forall u \in U.$$

NOTE 325

I.e., $\bigcap \{F(u)+V: u \in U\} \neq \emptyset$. Hence F is a.l.s.c. and the proof is complete.

If Y is a normed linear space, then Theorem A is due to Deutsch and Kenderov [1, Theorem 2.4]. Furthermore, if F is strengthened to a lower semicontinuous mapping, then Theorem A is due to Michael [2, Lemma 4.1].

We like to point out that the proof of Theorem A does not depend on any metric topology. By the way, if X = Y in Theorem A, then F has an almost fixed point. Using this result, we can study approximate methods for the equilibrium point of abstract economies (or generalized games).

REFERENCES

- F. Deutsch and P. Kenderov, Continuous selections and approximate selections for set-valued mappings and applications to metric projections, SIAM J. Math. Anal. 14 (1983), 185–194.
- 2. E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-381.