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The purpose of this note is to show a new generalization of the continuous
approximate selection theorem of F. Deutsch and P. Kenderov (1983, SIAM J.
Math. Anal. 14, 185–194). © 2001 Elsevier Science

Let X be a subset of a Hausdorff topological space E, Y be a locally
convex topological vector space, and O(x) be denoted the collection of all
neighbourhoods of x. Suppose that F: XQ 2Y is a multivalued mapping
with nonempty values and h denotes the origin point of Y. F is called
almost lower semicontinuous (abbreviated as a.l.s.c.) at x ¥X if for each
V ¥ O(h) there exists an U ¥ O(x) such that 4 {F(u)+V : u ¥ U} ]”. We
say that F has continuous approximate selections if for every V ¥ O(h)
there is a continuous function f: XQ Y satisfied that f(x) ¥ F(x)+V for
all x ¥X.

Theorem A. If X is paracompact and F(x) is nonempty convex for each
x ¥X, then F is a.l.s.c. if and only if F has continuous approximate selec-
tions.
Proof. Necessity. It is analogous to the proof of Theorem 2.4 of [1],

but let the convex neighborhood of the origin of Y be V instead of the
ball Be(h).

Sufficiency. For any V ¥ O(h) there is a balanced neighborhood
W ¥ O(h) such that W+W … V. Let f: XQ Y be a continuous mapping
such that f(x) ¥ F(x)+W for all x ¥X. By virtue of the continuity of f,
there exists for each x ¥X a neighborhood U ¥ O(x) such that f(u) ¥
f(x)+W for all u ¥ U. From the balancedness of W, we have that
f(x) ¥ f(u)+W for all u ¥ U. Consequently,

f(x) ¥ f(u)+W+W … F(u)+V -u ¥ U.



I.e., 4 {F(u)+V : u ¥ U} ]”. Hence F is a.l.s.c. and the proof is
complete. L

If Y is a normed linear space, then Theorem A is due to Deutsch and
Kenderov [1, Theorem 2.4]. Furthermore, if F is strengthened to a lower
semicontinuous mapping, then Theorem A is due to Michael [2, Lemma 4.1].

We like to point out that the proof of Theorem A does not depend on
any metric topology. By the way, if X=Y in Theorem A, then F has an
almost fixed point. Using this result, we can study approximate methods
for the equilibrium point of abstract economies (or generalized games).
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